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Abstract. We propose a model for the intersection of two urban streets. The traffic status of the crossroads
is controlled by a set of traffic lights which periodically switch to red and green with a total period of T .
Two different types of crossroads are discussed. The first one describes the intersection of two one-way
streets, while the second type models the intersection of a two-way street with an one-way street. We
assume that the vehicles approach the crossroads with constant rates in time which are taken as the model
parameters. We optimize the traffic flow at the crossroads by minimizing the total waiting time of the
vehicles per cycle of the traffic light. This leads to the determination of the optimum green-time allocated
to each phase.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
82.20.Mj Nonequilibrium kinetics – 45.70.Vn Granular models of complex systems; traffic flow

1 Introduction

Over the past decade, the vehicular traffic problems has
been intensively investigated within the context of sta-
tistical physics (for a review see Refs. [1–4]). Modeled as
a system of interacting particles driven far from equilib-
rium, vehicular traffic presents the possibility to study var-
ious aspects of truly non-equilibrium systems which are
of current interest in statistical physics [5–7]. The ma-
jority of these studies have been allocated to the high-
way traffic. The other area in vehicular traffic is urban
traffic which have also been studied by statistical physi-
cists [1]. The simulation of traffic flow in a large-sized city
is a formidable task and many degrees of freedom have
to be involved (see e.g. [8–10]). In practice, streets of a
city form a network of junctions that are linked together.
Each crossroads receives demands (vehicles attempting to
pass the cross) and at each crossroads there exists a traffic
light which, with some certain programming, controls the
transportation. The first model introduced by statistical
physicists for the description of the city network, known
as the BML model in the literature, uses a deterministic
cellular automata framework [11] and predicts a sort of
phase transition from free-flow to a jammed state. In the
model, each site of a square lattice represents the crossing
of a single-lane east-west street and a single-lane north-
south street (no turning of vehicles are allowed). The state
of east-bound vehicles are updated synchronously at every
odd discrete time steps whereas those of the north-bound
vehicles are updated in parallel at every even time step
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following a rule which is simple extension of totally asym-
metric simple exclusion process (TASEP) [6,7].

The BML model has been generalized to take into
account several realistic features of traffic in cities such
as asymmetric distribution of cars [12], faulty traffic
lights [13], independent turning of the vehicles [14,15] and
green-wave synchronization [16]. At first sight, the BML
model and the above-mentioned extensions seem unreal-
istic because the vehicles hop from one crossing to the
next. In a more realistic generalization, each connecting
bond of neighbouring junctions were replaced by a deco-
rated bond [17–19]. Later, a more serious model of city net-
work was introduced by Chowdhury and Schadschneider
(CS model) [20] which developed a more detailed fine-
grained description of city traffic. This model combines the
BML mode together with the Nagel-Schreckenberg model
of highway traffic [21,22]. In the CS model, the signals
are synchronized in such a way that all the signals remain
green for the east-bound vehicles for a time interval T and
then, simultaneously turn red for the east-bound vehicles.
To the best of our knowledge, The CS model and its gen-
eralization [23] is the most realistic model introduced by
the statistical physicists for city network but nevertheless,
despite its nice formulation, there are still a lot of sim-
plifications which prevent it from being an effective and
applicable model to a city network.

In spite of developing models for describing the city
network, no detailed description of an isolated crossroads
has yet been explored. We strongly believe that in order
to have a better insight to the problem of city network,
one must have a clear picture at single crossroads which
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would definitely be of great importance for an optimal
programming of the entire network. The empirical mecha-
nism by which the traffic lights are controlled is generally
divided into two distinct methods: fixed time and real-
time. In the fixed-time method, a fixed value of time is
allocated to the traffic light as well as its sub-phase times.
In the real-time method, which is becoming increasingly
popular in great cities, the ensemble of crossroads are in-
telligently controlled by a central controller. The control
mechanism is usually based on the concept of producing a
kind of green waves between the crossroads. These waves
interact with each other, and if the passing-demands are
of high values, the green waves may have destructive ef-
fects on each other, and hence, the concept of green wave
may fail to be the final solution for optimizing the overall
flow. Knowing the local optimum behaviour of single inter-
sections could give us an appropriate criterion to control
the set of crossroads in an adaptive manner. Additionally,
not all the intersections of a city are highly affected by
the neighbouring intersections. To a good approximation,
marginal intersections could be regarded as isolated cross-
roads and therefore single-crossroads optimization strate-
gies need to be investigated. In this paper we aim to ana-
lyze a single crossroads in detail in order to find a better
insight to the problem of optimizing the total flow in cities.

The organization of this paper is as follows: In Sec-
tion 2, we introduce the model, state our strategy for op-
timizing the traffic flow at the one-way to one-way inter-
section and finally obtain the optimum green-times of the
corresponding phases. In Section 3, we extent our model
to allow for a three-phase one-way to two-way crossroads.
Section 4 is devoted to some empirical data on two of the
Tehran crossroads which are under the control of an intel-
ligent traffic controller system. We compare the averaged
green-time proposed by system to the optimum green-time
of our fixed time theory. Our theory input-parameters are
obtained via the empirical data. Finally we give our con-
cluding remarks in Section 5.

2 Formulation of the model

2.1 One-way to one-way crossroads

Let us consider a single crossroads which is the result of
the intersection of two perpendicular streets. In their sim-
plest structure, these streets can each direct a one-way
traffic flow. With no loss of generality, we take them as
one-way South to North (S-N) and West to East (W-E)
streets. Cars arrive at the south and the west entrances
of the crossroads. In our model, we assume that the ar-
rival rates of the cars, i.e., the number of cars reaching
the crossroads per second, are constant in time. Although
everyday driving experiences in cities indicates that these
rates have inevitable fluctuations in the course of time, yet
in definite time intervals, the assumption of the constant
arrival rates could be justified at least on an average level.
As will be seen in what follows, this assumption leads to

great simplifications. We take the arrival rates to be α1

(for S-N cars) and α2 (for the W-E cars) respectively. Also
we denote the passing-rate of cars (number of cars passing
the crossroads in the unit of time during the green-phase)
by β1 and β2. The period of the traffic lights is taken to be
a definite value T which is assumed to remain constant.
The starting time of each cycle of the traffic light is the
moment at which the light turns green for the S-N street.
The S-N light remains green for T1 seconds. At T1 the traf-
fic lights turn red for the S-N street and simultaneously
changes to green for the W-E street. This is the beginning
of the second phase which continues from T1 to T (end of
the cycle). During Phase I (0 ≤ t ≤ T1), the S-N cars can
pass the crossroads northwards and W-E cars are stopped
for the red light. Over Phase II (T1 ≤ t ≤ T ), the S-N
cars must wait behind the red light whilst the W-E cars
are eastwards passing the crossroads.

Now the basic question is “how should traffic engineers
adjust the value of T1 in order to optimize the traffic flow
through the intersection?”. With the assumption that the
number of passengers in each car takes an equal average
value for each direction, the optimization task is realized
by minimizing the total waiting time of the cars per cycle
of the traffic light. For this purpose, we introduce two
quantities N1 and N2 which represent the number of cars
stopping (queues) at the red lights in the red phases of the
S-N and W-E streets respectively. Clearly N1 and N2 are
functions of time and, in general, are divided into different
lanes on the streets. The dynamics of N1 and N2 are read
from the following equations in which n denotes the cycle
number of the traffic light:

N1(nT + T1) = [N1(nT ) + (α1 − β1)T1]θ (1)
N2(nT + T1) = N2(nT ) + α2T1 (2)
N1((n+ 1)T ) = N1(nT + T1) + α1(T − T1) (3)
N2((n+ 1)T ) = [N2(nT + T1) + (α2 − β2)(T − T1)]θ.

(4)

The θ symbols ensure the positiveness of the quantities
in the brackets, i.e., the value of θ is one if the quantity in
the bracket is positive and zero elsewhere. This limitation
is dictated to us since, by definition, the quantities N1

and N2 can only take positive values (they denote queues’
lengths). Let us investigate the different situations in more
details. For instance in the equation (1), the case θ = 1
which corresponds to N1(nT +T1) > 0 describes the situ-
ation that after the S-N lights goes red (in the nth cycle),
the whole queue of vehicles has not pass the cross and
only a part of the queue has managed to pass during the
green-phase. The other case, i.e., θ = 0 which corresponds
to N1(nT + T1) = 0 indicates that the nth queue waiting
in S-N direction has completely passed the cross during
the time interval nT ≤ t ≤ nT +T1. The same arguments
apply to equation (4).

We now define the total waiting time (TWT) of the
vehicles per cycle of the traffic light. It is the total time
wasted by the vehicles during their stop in the red phases.
The TWT is the sum of the sub-waiting times of each di-
rection. Denoting the TWT and the sub waiting times by
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Tw, T (w,1) and T (w,2) respectively, the following equations
could be written for the nth cycle.

T
(w,1)
n→n+1 = N1(nT + T1)(T − T1) +

1
2
α1(T − T1)2 (5)

T
(w,2)
n→n+1 = N2(nT )T1 +

1
2
α2T

2
1 . (6)

Let us consider equation (5). The waiting time of the
(n+1)th S-N queue is divided into two part. The first part
is related to the initial length of the queue: N1(nT + T1).
If this initial part has a non-zero length, then the time
wasted by the initial vehicles is simply their number times
the total period of the red phase. This leads to the first
term of equation (5). The second part is related to the con-
tribution given by the new oncoming vehicles arriving at
the S-N direction of the crossroads during the red period
which lasts for T −T1 seconds. Since we have assumed the
vehicles arrive at a constant rate α1, the time wasted by
the vehicles arriving in the infinitesimal interval [t, t+ dt]
of the red interval is simply their number (α1dt) times the
remaining time to the green signal (T −T1− t). Therefore
the total contribution is given by integrating over the red
period: ∫ T−T1

0

α1dt(T − T1 − t) =
1
2
α1(T − T1)2

which is the second term on the right hand side of equa-
tion (5). Similar arguments lead the equation (6).

As clearly can be seen, the analytical expression of the
TWT strongly depends on the positiveness of the queues’
lengths just after the lights go red. In what follows, we
show that different traffic status can be identified accord-
ing to the behaviour of the quantities N1(nT + T1) and
N2(nT ). Let us look at the first cycle, i.e., n = 0. If
N2(0) = 0 (a complete passing of the previous W-E queue)
then it is easily seen that in order to have a complete pass-
ing of the next W-E queue, one should have the condition
α2T − β2(T − T1) ≤ 0. In this case, one has N2(T ) = 0.
It can be easily verified that that provided that the above
stability condition holds, we have no W-E queues after the
W-E light goes red for the general nth cycle. This charac-
terizes a light traffic state in which the whole queue can
pass the crossroads during one green time. Similar argu-
ments for the S-N direction shows that provided the stabil-
ity condition α1T−β1T1 ≤ 0 holds, we have a stable, light
traffic state in the S-N direction and that N1(nT+T1) = 0
for general n. The case which traffic condition is light in
both directions (State I) is characterized by the following
stability conditions:

α2T − β2(T − T1) ≤ 0 ; α1T − β1T1 ≤ 0 (7)

which result in the following relations:

N1(nT + T1) = N2(nT ) = 0, n = 1, 2, ... (8)

In this state, The TWT is independent of the cycle num-
ber n. Putting the above conditions into equations (5, 6)

and minimizing the TWT with respect to T1 leads to the
following equation:

T1 =
α1

α1 + α2
T. (9)

Inserting the above answer in the stability conditions (7)
yields to the following constraints among the rates:

β2 ≥ α1 + α2, β1 ≥ α1 + α2. (10)

We now investigate a totally different situation, i.e., a
crowded crossroads in both directions. Let us again look at
the first cycle. Supposing the first cycle is characterized by
the conditions N2(0), N1(T1) > 0. one could easily verify
that provided the following relations hold:

α1 > β1, α2T > β2(T − T1). (11)

We have a stable condition in the next cycles:

N1(nT + T1), N2(nT ) > 0. (12)

In sharp contrast to the State I, in this state which is
characterized by the equation (11) and referred to as the
state II, the values of N1 and N2 are functions of the cycle
number. This is easily seen by the following relations:

N1(nT ) = N1(0) + n(α1T − β1T1) (13)
N2(nT ) = N2(0) + n[α2T − β2(T − T1)] (14)

N1(nT + T1) = N1(0) + n(α1T − β1T1) + (α1 − β1)T1

(15)
N2(nT + T1) = N2(0) + n[α2T − β2(T − T1)] + α2T1.

(16)

The above relations show that queues’ lengths grow
linearly with time and a complete passing of a queue in
one cycle is not possible. Drivers should wait more than
one cycle in order to pass the crossroads. It can be shown
that in the large cycle-number limit, the sub-waiting times
are as follows:

T
(w,1)
n→n+1 ∼ n(T − T1)(α1T − β1T1) (17)

and

T
(w,2)
n→n+1 ∼ nT1(α2T − β2(T − T1)). (18)

We now minimize the TWT with respect to T1 which leads
to the following equation:

T1 =
β1 + β2 + α1 − α2

2(β1 + β2)
T (19)

the consistency of this solution with stability condi-
tions (11) yields the following constraints:

α1 > β1, α1β2 + 2α2β1 + α2β2 ≥ β1β2 + β2
2 . (20)

Also positiveness of T1 itself imposes the extra restric-
tion α2 < β1 + β2 + α1.
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Next we consider the situation (state III) where in the
first cycle of the traffic light, one has N1(T1) = 0 but
N2(0) > 0. This corresponds to the situation in which the
S-N street has a light traffic flow while the W-E street has
a heavy one. The conditions for a stable pattern are:

α1T − β1T1 ≤ 0, α2T − β2(T − T1) ≥ 0. (21)

The above stability conditions ensures the following rela-
tions:

N1(nT + T1) = 0, N2(nT ) > 0. (22)

In the large cycle-number limit, minimizing of the TWT
leads to the value T1 = β2−α2

2β2
T . It could be easily checked

that the above solution is inconsistent with the stability
conditions, and hence, is not acceptable as an optimum
signalization of traffic light. In the region determined by
the stability conditions (21), the TWT is positive definite
and therefore its minimum coincides with the upper limit
of the inequalities (21). Therefore one finds:

T1 = max
(
α1

β1
,
β2 − α2

β2

)
T. (23)

A similar argument applies to the final state (state IV)
which is characterized by N1(nT + T1) > 0 and
N2(nT ) = 0 (it is sufficient to interchange the indices one
and two).

3 One-way to two-way crossroads

At this stage, we consider another frequent type of a cross-
roads. Here we let the vehicles move in both S-N as well
as N-S directions but still the vehicles in the W-E street
are restricted to move eastwards. This situation describes
a one-way to two-way urban intersection. Consequently
each cycle consists of three phases. In the first phase which
lasts for 0 ≤ t ≤ T1, the traffic light is green for the S-N
cars and red for the other two directions. During the sec-
ond phase which starts at T1 and finishes at T2, the traffic
light is green for the N-S cars and red for the other two
directions. In the final phase, which lasts for T2 ≤ t ≤ T ,
the traffic light remains green for the W-E cars and red
for the N-S as well as S-N directions. The entrance rates
are taken to be α1, α2 and α3 and we denote the passing
rate by β1, β2 and β3 for each direction respectively. The
starting time of the cycles is chosen to be the moment at
which the traffic light turns green for the S-N direction.
Similar equations for the queues’ lengths N1, N2 and N3

could be written down and in principle one can evaluate
the TWT in terms of these quantities. The exact form
of the TWT strongly depends on the positiveness of the
queues’ lengths just after the traffic lights goes red for
the respective direction. In the case under consideration,
eight different possibilities are identified due to the traffic
conditions (two possibilities for each movement direction).
Now we write the explicit expression for the TWT during

the n→ n+ 1 cycle.

T
(w,1)
n→n+1 = N1(nT + T1)(T2 − T1) +

1
2
α1(T − T1)2

+N1(nT + T2)(T − T2) (24)

T
(w,2)
n→n+1 = N2(nT )T1 +

1
2
α2T

2
1 +N2(nT + T2)(T − T2)

+
1
2
α2(T − T2)2 + α2T1(T − T2) (25)

T
(w,3)
n→n+1 = N3(nT )T1 +

1
2
α3T

2
2 +N3(nT + T1)(T2 − T1).

(26)

Let us only discuss the most probable one which corre-
sponds to light traffic conditions in all directions:

N1(nT + T1) = N2(nT + T2) = N3(nT ) = 0. (27)

It could be easily verified that the triple stability condition
for the validity of the above assumptions are as follows:

α1T − β1T1 ≤ 0, α2T − β2(T2 − T1) ≤ 0
and α3T − β3(T − T2). (28)

Inserting equation (27) into equations (24–26) and mini-
mizing the TWT with respect to T1 and T2 leads to the
following fixation of T1, T2.

T1 = T
α1(α2 + α3)− α2α3

α1(α2 + α3) + α2α3
(29)

T2 = T
2α1α2

α1(α2 + α3) + α2α3
· (30)

One directly observes that in the symmetric case of
equal arrival rates (α1 = α2 = α3), T1 and T2 take the
expected values T

3 and 2T
3 respectively. The other point

which must be mentioned is that in this traffic state, T1

and T2 do not depend on the passing rates, and are solely
determined by the arrival rates.
Another extreme is the situation when all of the three
directions are carrying a heavy traffic flow. It could be
anticipated that the stability conditions for the positive-
ness of N1(nT+T1), N2(nT+T2) and N3(nT ) are α1 > β1,
α2T2−β2(T2−T1) > 0 and α3T −β3(T −T2) > 0. In this
case, all the three sub-waiting times depend on the cycle
number n and it can be shown that in the large n limit,
the minimization of the TWT give rises to the following
values for T1 and T2.

T2 =
T

2
2β1β2 + β2α1 + β1α2 − α3(β2 + β1) + β3(β1 + β2)

β1β2 + β2β3 + β3β1

(31)

T1 =
T

2
β1β2 + β3β1 + β2α1 + β3α1 − α2β3 − β2α3

β1β2 + β2β3 + β3β1
·
(32)

Here, in contrast to (29) and (30), the passing rates appear
in the expressions of T1 and T2 and it can be seen that in
the fully symmetric condition, one again obtains that T1

and T2 are one-third and two-thirds of T respectively.
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Fig. 1. The cycle-ratio of green-time of Abbasabad street to
the total period of the traffic light cycle. The numbers on the
horizontal axes are the cycle number.

4 Empirical data

For comparison of our model to the empirical data, a time-
series analysis on two of Tehran intersections were car-
ried out. The central part of Tehran is under control of
the SCATS (Sydney Co-ordinated Adaptive Traffic Sys-
tem) [24,25] that is an intelligent traffic controller. The
strategy followed by most of urban traffic control sys-
tems is based on establishing green-waves along the major
streets of cities. One popular strategy consists of dividing
the city intersections into different sets. Each set has a
leading mother crossroads (the prime crossroads in the
set) and a lot of offspring crossroads. Each set is linked to
the neibouring ones. The signalization of the crossroads
network is determined by the implementation of green
wave between adjacent sets. The allocated green times
at a crossroads is proportional to the number of vehicles
(traffic volume) approaching to the crossroads. Since in
general, there is a natural fluctuation in the traffic vol-
ume, the amount of green times and hence the complete
cycle time of traffic lights are variables in an intelligent
control method.

We considered two different intersections. The first one
which is located in Tehran downtown connects Valiasr St.
to Takhtejamshid St. Both of these are one-way and ma-
jor streets. The other crossroads connects Abbasabad St.
(one-way) to Mahnaz St. (one-way). In contrast to the
previous case, here the first street is a major while the
second street is a minor one. The data set is provided
by magnetic counting loops which are installed just be-
fore the pedestrian-lines of each crossroads. The data were
collected on second of July 2000. The data consist of the
sub-phase green times and the numbers of vehicles passed
during the green times for each cycle of the traffic lights
(traffic volumes). In our major-to-minor crossroads and
for each cycle of the traffic light, we evaluated the ratio
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Fig. 2. The cycle-ratio of the passed vehicles (during the green
phases) of Abassabad street to Mahnaz street of each traffic
light cycle. The numbers on the horizontal axis denote the
cycle number.
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Fig. 3. The above graph denotes the total number of passed
vehicles (from both streets) during fifteen-minute time inter-
vals. The lower graph shows the number of passed vehicles form
Mahnaz street during fifteen-minute intervals.

of the major street green-time to the total cycle time. We
call this quantity the time-cycle-ratio. Similarly can can
consider the number of passed vehicles, i.e., traffic volume
in a cycle and introduce the volume-cycle-ratio which for
each cycle is obtained by dividing the number of passed
vehicles during a sub-phase green time to the whole num-
ber of passed vehicles during a complete cycle. Figures 1–3
belong to the major-to-minor crossroads. As seen from the
graphs, the time-cycle-ratio allocated to the major street
strongly fluctuates due to demand fluctuations received by
the crossroads. In order to have a rough estimation of our
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Fig. 4. The cycle-ratio of green time allocated to Takhte-
jamshid Street. The numbers on the horizontal axis denote
the cycle number.

model parameters, we considered a two-hour time interval
between 12:30–14:30 during which we have the least fluc-
tuations in the traffic volume. It is empirically observed
that in this two-hour period, the traffic state is light and
the queues are cleared during one cycle. Therefore, the op-
timal green times should be evaluated from equation (9).
According to this equation, we only need to know the the
ratio of α1

α2
·

We should mention that due to the position of the
magnetic counting loops, they are unable to measure the
upstream fluxes which are directly related to the param-
eters α1 and α2. For a better estimation of the in-flow
parameters, one should install another set of magnetic
loops a few meters upwards the pedestrian-lines. We ap-
proximated the ratio of α1

α2
by the ratio of the traffic vol-

ume which has passed through the major street to the
traffic volume of the minor one during the two-hour pe-
riod. The two-hour traffic volumes are simply obtained by
adding the cycle volumes together. This yields the value
α1
α2

= 0.35. Putting this value into equation (9) yields
T1
T = 0.74. On the other hand, the averaged value of
the empirical time-cycle-ratio of the major street over the
two-hour period leads to the result T1

T = 0.64 which dif-
fer by ten percent from the value predicted by the theory.
Figures 4–6 belong to our major-to-major crossroads. Here
we focused on the interval 13:30–15:30. Analogous to the
major-to-minor, the traffic state is light. The empirical
averaged value of T1

T is 0.52 while the same amount eval-
uated from equation (9) is 0.56 (T1 refers to the green
time of Takht. Street). Here we observe that the differ-
ence between the fixed time method (theory) and real-time
method (intelligent control) is less than one obtained in
the major-to-minor crossroads. As depicted from the di-
agrams, in the major-minor crossroads, we observe more
fluctuations in the time-cycle-ratio in comparison with the
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Fig. 5. Cycle-ratio of the passed vehicles from Takhtejamshid
street to Valiasr street.
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Fig. 6. The above graph denotes the total number of passed
vehicles (from both streets) during fifteen-minute time inter-
vals. The lower graph shows the number of passed vehicles form
Takhtejamshid str. during fifteen-minute intervals.

major-major crossroads. These fluctuations are enhanced
in the volume-cycle-ratio. The least fluctuation belongs to
the time-cycle-ratio of the major-major crossroads. Com-
paring the averaged values of these time-cycle-ratio values
over certain intervals leads to a better understanding of
the traffic state.

5 Summary and conclusion

In conclusion, we have developed a prescription for the
traffic-light programming at a single urban crossroads.
The method is based on minimizing the total waiting-time
of cars stopping in the red phases of the traffic light. In
our model the total period of the cycle is assumed to be
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Table 1.

Traffic state Optimized green time Stability conditions

State I (S-N light, W-E light) T1 = α1
α1+α2

T β1, β2 ≥ α1 + α2,

State II (S-N heavy, W-E heavy) T1 = β1+β2+α1−α2
2(β1+β2) T α1 ≥ β1, α1β2 + 2α2β1 + α2β2 ≥ β1β2 + β2

2

State III (S-N light, W-E heavy) T1 = max(α1
β1
, β2−α2

β2
)T α1 ≤ β1, β2 ≥ α2

State IV (S-N heavy, W-E light) T1 = max(α2
β2
, β1−α1

β1
)T α2 ≤ β2, β1 ≥ α1

a fixed value. We have also assumed that vehicles arrive
at the crossroads with constant time rates. This is equiv-
alent to a constant time-headway between cars. In reality
we have a fluctuating time-headway due to the natural
fluctuation in the traffic volume. As a first stage of an an-
alytical treatment, we have taken the arrival rates to be
constant in time. However, for a more realistic descrip-
tion, one should remove this restriction and assume that
the time headway satisfies a random distribution function.
Work along this assumption is in progress. The other point
concerns the passing-rates. One should note that through-
out the paper, the passing-rate of cars from the crossroads
are taken to be constants. This is valid only if the green-
phase time is not so long such that the time-headways
between the cars exceed certain values. The value of T
should be so tuned that during the green phases, time-
headway is less than a certain value. In fact, in the model,
the values of the passing rate refer to the maximum capac-
ity of cross (maximum number of cars passing the cross
in the unit of time), which is plausible if the T is appro-
priately adjusted with the congestion of the crossroads.
The empirical value of the passing rates are determined
by the crossroads characteristics such as road conditions,
number of lanes, speed limits etc. Our model is more ap-
propriate for rush ours during which the time-headways
are minimum and the crossroads are operating with their
maximum capacities. In Table 1, we have summarized our
theoretical optimized green times including stability con-
ditions in four different traffic states of the one-way to
one-way crossroads.

Optimizing the traffic at each crossroads is the stating
point of the more comprehensive problem of city network.
Nevertheless, our model best suits those marginal inter-
sections of cities where the effect of the other crossroads
is suppressed.
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